Block preconditioners for symmetric indefinite linear systems
نویسندگان
چکیده
This paper presents a systematic theoretical and numerical evaluation of three common block preconditioners in a Krylov subspace method for solving symmetric indefinite linear systems. The focus is on large-scale real world problems where block approximations are a practical necessity. The main illustration is the performance of the block diagonal, constrained, and lower triangular preconditioners over a range of block approximations for the symmetric indefinite system arising from large-scale finite element discretization of Biot’s consolidation equations. This system of equations is of fundamental importance to geomechanics. Numerical studies show that simple diagonal approximations to the (1,1) block K and inexpensive approximations to the Schur complement matrix S may not always produce the most spectacular time savings when K is explicitly available, but is able to deliver reasonably good results on a consistent basis. In addition, the block diagonal preconditioner with a negative (2,2) block appears to be reasonably competitive when compared to the more complicated ones. These observation are expected to remain valid for coefficient matrices whereby the (1,1) block is sparse, diagonally significant (a notion weaker than diagonal dominance), moderately well-conditioned, and has a much larger block size than the (2,2) block. Copyright 2004 John Wiley & Sons, Ltd.
منابع مشابه
Robust Preconditioned Iterative So- lution Methods for Large-scale Non- symmetric Problems
We study robust, preconditioned, iterative solution methods for largescale linear systems of equations, arising from different applications in geophysics and geotechnics. The first type of linear systems studied here, which are dense, arise from a boundary element type of discretization of crack propagation in brittle material. Numerical experiment show that simple algebraic preconditioning str...
متن کاملThe University of Reading Department of Mathematics Constraint-style preconditioners for regularized saddle point problems
The problem of finding good preconditioners for the numerical solution of an important class of indefinite linear systems is considered. These systems are of a regularized saddle point structure [ A B B −C ] [ x y ] = [ c d ] , where A ∈ Rn×n, C ∈ Rm×m are symmetric and B ∈ Rm×n. In Constraint preconditioning for indefinite linear systems, SIAM J. Matrix Anal. Appl., 21 (2000), Keller, Gould an...
متن کاملSymmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems
We consider large scale sparse linear systems in saddle point form. A natural property of such indefinite 2-by-2 block systems is the positivity of the (1,1) block on the kernel of the (2,1) block. Many solution methods, however, require that the positivity of the (1,1) block is satisfied everywhere. To enforce the positivity everywhere, an augmented Lagrangian approach is usually chosen. Howev...
متن کاملPreconditioning Indefinite Systems in Interior-Point Methods for quadratic optimization
A new class of preconditioners is proposed for the iterative solution of symmetric indefinite systems arising from interior-point methods. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless appropriately preconditioned. Now we introduce two types of preconditione...
متن کاملExtension of Two-level Schwarz Preconditioners to Symmetric Indefinite Problems TR2008-914
Two-level overlapping Schwarz preconditioners are extended for use for a class of large, symmetric, indefinite systems of linear algebraic equations. The focus is on an enriched coarse space with additional basis functions built from free space solutions of the underlying partial differential equation. GMRES is used to accelerate the convergence of preconditioned systems. Both additive and hybr...
متن کامل